Skip to content

Bokeh

PyConsole supports visualization with bokeh

Usage

Steps

  1. import data processing library and bokeh figure
python
import numpy as np
from scipy.integrate import odeint

from bokeh.plotting import figure
  1. create bokeh figure
python
sigma = 10
rho = 28
beta = 8.0/3
theta = 3 * np.pi / 4

def lorenz(xyz, t):
    x, y, z = xyz
    x_dot = sigma * (y - x)
    y_dot = x * rho - x * z - y
    z_dot = x * y - beta* z
    return [x_dot, y_dot, z_dot]

initial = (-10, -7, 35)
t = np.arange(0, 100, 0.006)

solution = odeint(lorenz, initial, t)

x = solution[:, 0]
y = solution[:, 1]
z = solution[:, 2]
xprime = np.cos(theta) * x - np.sin(theta) * y

colors = ["#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B"]

p = figure(title="Lorenz attractor example", background_fill_color="#fafafa")

p.multi_line(np.array_split(xprime, 7), np.array_split(z, 7),
             line_color=colors, line_alpha=0.8, line_width=1.5)
  1. show bokeh figure
python
p.show()

bokeh lorenz